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1 INTRODUCTION
Consistency testing (henceforth “testing”) is the problem of determining if an abstract execution of
a concurrent program is feasible under a given memory model, i.e. does it have a concrete execution
consistent with the memory model, and finds many applications in the testing and verification
of concurrent software. Model checkers attempt to exhaustively search for buggy executions to
prove or disprove the correctness of a program. Since the number of concrete executions can be
exponential in the number of abstract ones, practical algorithms limit the search space to abstract
executions. To this end, model checkers use consistency testers to check the feasibility of the
abstract executions they enumerate [1, 3–5, 8, 11, 16, 17]. In the context of predictive concurrency
testing [6, 15], consistency testers are also used to limit the search space to sound reorderings.

Consequently, the complexity of testing has been studied across several parametrizations, memory
models, and levels of abstractions. In the most abstract setting, consistency testing is done for
reads-value abstract executions (henceforth “reads-value testing”), where the input is the set of
events 𝐸 annotated with values, together with the program order po. For most memory models,
reads-value testing is intractable [7, 9, 12–14, 20], so recent work has instead tackled the easier
problem of testing reads-from abstract executions (henceforth “reads-from testing”), where one
is additionally given a complete reads-from relation rf [1, 2, 4, 10, 20], enabling scalable model
checkers [5, 16]. Most notably, reads-from testing under the RC20 memory model [19], an important
formalization of the C/C++ memory model, can be done efficiently in time 𝑂 (𝑛(𝑘 + 𝑑)), where 𝑛, 𝑘 ,
and 𝑑 are the number of events, threads, and memory locations in the execution respectively [23].
Unfortunately, the problem of testing store-order abstract executions (henceforth “store-order

testing”), where one is also given the store-order mo, has largely been understudied. Furthermore,
the apparent difficulty of performing a thorough algorithmic investigation for it gives rise to a unique
chicken-and-egg problem. Because of the apparent hardness, no applications that use a store-order
tester have been developed. But on the other hand, lack of a solid application discourages an active
investigation of this problem. However, this cycle is worth breaking. For instance, model checking
programs that are very read heavy or have predictable write patterns may require enumerating
much fewer store-order abstract executions than reads-from abstract executions. In such a setting,
an efficient store-order tester can significantly lower the overall model checking cost.
In this work, we initiate the study of store-order testing by exploring its algorithmic and

complexity-theoretic landscape under the memory models RC20, RA, SRA, Relaxed, and Relaxed-
Acyclic [10], relevant due to their relation to C/C++, whose informal memory model has even been
adapted to the Rust and Go languages [21, 22]. A summary of our results can be found in Table 1.

We show that store-order testing is intractable for (even the RMW-free fragments of) RC20, RA,
SRA, and Relaxed-Acyclic. Specifically, for any memory model M whose strength lies between
the RMW-free RA and SRA memory models, store-order testing underM is NP-complete. Store-
order testing under RMW-free Relaxed-Acyclic is not only NP-complete, but also W[1]-hard when
parameterized by the number of threads (so a fixed-parameter-tractable algorithm is unlikely).
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Memory model Upper bound Lower bound
RC20 2poly (𝑛) NP-complete even for 𝑘 = 4 (sec. 3.1)
SRA ⪯ M ⪯ RA 2poly (𝑛) NP-complete (fig. 1a)
Relaxed-Acyclic 2poly (𝑛) W[1]-hard (fig. 1c)
RC20-Ordered 𝑂 (𝑛𝑘) (sec. 3.2) No 𝑂 (𝑛𝜔/2−𝜖 ) algorithm1 (fig. 1b)
Relaxed Θ(𝑛) (sec. 3.2)
Single-writer RC20/RC20-Ordered 𝑂 (𝑛𝑘) (sec. 3.2) No 𝑂 (𝑛𝜔/2−𝜖 ) algorithm1 (fig. 1b)
Single-writer RA/SRA 𝑂 (𝑛𝑘) (sec. 3.2) No 𝑂 (𝑛𝜔/2−𝜖 ) algorithm1 (fig. 1b)
Single-writer Relaxed-Acyclic Θ(𝑛) (sec. 3.2)
Single-writer Relaxed Θ(𝑛) (sec. 3.2)

Table 1. The complexity landscape of store-order consistency testing.

Finally, store-order testing under RMW-free RC20 is NP-complete even when the input is limited
to only 4 threads, the strongest intractability result we have.
We next identify a practically motivated fragment for which the store-order testing problem

becomes tractable. Specifically, the single-writer fragment, i.e. the fragment where every location
is written to by exactly one thread, admits an efficient algorithm, running in time 𝑂 (𝑛𝑘), and in
𝑂 (𝑛) for specific subfragments. We extend this result by generalizing the single-writer constraint
to a weaker one, which can be cleanly formalized as a new memory model we call ‘RC20-Ordered’.
We also show that these algorithms are optimal or nearly optimal by establishing conditional
super-linear lower bounds1 that also apply to the respective RMW-free fragments.

We find that the RC20-Ordered memory model exhibits salient properties. Our proofs establish
and heavily use a partial order on executions that compares their mo?; rf2 relations. This led to the
surprising result that there is a unique minimal consistent concrete execution in this partial order,
hinting that the “Ordered” strengthening may be interesting to study in its own right.

2 PRELIMINARIES
Executions3. A (store-order) abstract execution is a tuple 𝐺 ≜ ⟨𝐸, po,mo⟩, where 𝐸 is a set of
events annotated with values, po is the program order, and mo is the store order. Given an abstract
execution𝐺 , a concrete execution (for𝐺) is a tuple𝐺 ≜ ⟨𝐸, po,mo, rf⟩ where 𝐸, po,mo match those
in 𝐺 and the reads-from relation rf is consistent with the locations and values of each event.
Memory models. An (axiomatic) memory model is a set of constraintsM that define whether a
given concrete execution is consistent. For example, the porf-acyclicity axiom is written 𝑎𝑐𝑦 (po∪rf)
and states that the relation po ∪ rf must be acyclic. A concrete execution 𝐺 satisfies or is consistent
under a memory model M (denoted 𝐺 |= M) if 𝐺 satisfies all the constraints of M. An abstract
execution 𝐺 is feasible underM if there exists some concrete execution 𝐺 for 𝐺 that satisfiesM.
The formalizations of the memory models pertaining to this work are presented in Appendix A.
Comparing strengths of memory models and defining fragments. M1 is stronger thanM2
(denoted M1 ⪯ M2) if for all concrete executions 𝐺 , 𝐺 |= M1 =⇒ 𝐺 |= M2. M1 is a fragment of
M2 if it only adds constraints, i.e. M1 = M2 ∪ C for some set of constraints C. Note that the term
“fragment” tends to refer to syntactical restrictions in the literature, e.g. constraints placed on the
program itself. For example, the Relaxed-Acyclic fragment of RC20 requires all operations to have
memory order Relaxed. This nuance is not important in this work, so our definition is simplified.

1There is no algorithm that runs in time 𝑂 (𝑛𝜔/2−𝜖 ) for any 𝜖 > 0, where 𝜔 is the matrix multiplication constant for
Boolean Matrix Multiplication (believed to be > 2).
2𝑅;𝑆 , 𝑅?, 𝑅+ denote the composition of relations 𝑅 and 𝑆 , reflexive and transitive closures of relations 𝑅 and 𝑆 respectively.
3To be precise, there are additional promises placed on po, mo, etc., which are not relevant in this extended abstract.
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𝑤𝑔1 (𝑥Δ,𝑔, 0) 𝑤𝑔2 (𝑥Δ,𝑔, 1) 𝑤𝑔3 (𝑥Δ,𝑔, 0)
𝑟𝑔𝑟 (𝑥Δ,𝑔, 0)

wy1 (𝑥Δ,𝑦, 0) wy2 (𝑥Δ,𝑦, 0)
ryr (𝑥Δ,𝑦, 0)𝑒𝑖

𝑒𝑘
𝑒 𝑗 rbr (𝑥Δ,𝑏, 0)

wb1 (𝑥Δ,𝑏, 0) wb2 (𝑥Δ,𝑏, 0)
𝑟𝑟𝑟 (𝑥Δ,𝑟 , 0)

𝑤𝑟1 (𝑥Δ,𝑟 , 0) 𝑤𝑟2 (𝑥Δ,𝑟 , 1) 𝑤𝑟3 (𝑥Δ,𝑟 , 0)
po mo

(a) Gadget for NP-hardness of SRA ⪯ M ⪯ RA

A

B

C

A1 B1 C1

A2 B2 C2

A3 B3 C3

A4 B4 C4

(b) Idea for triangle hardness of single-writer RA/SRA
Fig. 1. Various parts of this work not covered in this extended abstract.

3 TECHNIQUES USED IN OUR RESULTS
3.1 Hardness of RC20
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(c) Schematic for
W[1]-hardness

of Relaxed-Acyclic

We show that the store-order testing problem under the RC20 memory
model is NP-complete even when the input only has 4 threads. Our
reduction from 3-SAT uses a novel technique based on toggle limits. A
toggle happens on a thread 𝑡 for a memory location 𝑥 when the view of
𝑡 for 𝑥 changes value. The number of toggles can be restricted by simply
limiting the number of writes to each location. We use two main ideas,
that Relaxed reads with different values can be used to force toggles,
and that Release-Acquire operations can be used to “join” threads’ views
together. These ideas are combined in our gadget such that the number
of forced toggles is controlled based on the selected variable assignment,
ensuring some thread runs out of toggles whenever a clause is falsified.

3.2 An efficient algorithm for the single-writer fragments
We show runtime upper bounds on the store-order testing problem as
listed in Table 1. Our algorithms are either optimal or nearly optimal due to our conditional super-
linear lower bounds1. All of our upper bound results follow from the main algorithm for the new
memory model RC20-Ordered that generalizes the single-writer fragment, which we describe next.
The RC20-Ordered memory model. RC20-Ordered is derived from RC20 with two modifica-
tions. First, we make release sequences unbounded by replacing rf+ with mo?; rf, changing the
synchronizes-with and happens-before relations. Next, we replace porf-acyclicity with hboRA-
acyclicity, similarly strengthening rf tomo?; rf. Surprisingly, under this strengthening, the minimal
consistent concrete execution is unique, a corollary which extends to the other single-writer models.
Testing algorithm for RC20-Ordered. Our algorithm starts with an partial execution with an
empty reads-from relation rf = ∅, and works in a greedy fashion, executing one event at a time.
The execution order is controlled such that it’s consistent with hboRA at all times. When executing
reads, an appropriate edge must be added to rf. Among the candidate writes which don’t break
consistency, we pick the earliest candidate in mo. This greedy choice ensures that the execution
graph minimizes the mo?; rf relation at all times. Our proofs of correctness and uniqueness of the
minimal consistent execution heavily rely on this minimality.

4 ONGOING AND FUTUREWORK
We aim to further refine the complexity landscape, starting with testing under SRA ⪯ M ⪯ RA
parameterized by 𝑘 , and either show its W[1]-hardness or find a FPT algorithm. Analogously, we
aim to refine the complexity of testing under Relaxed-Acyclic in the bounded threads setting.
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Program. Lang. 7, PLDI, Article 137 (jun 2023), 25 pages. https://doi.org/10.1145/3591251

A FORMALIZATIONS OF MEMORY MODELS USED
We now add details that were omitted from the extended abstract. The formalization presented
here is consistent with [10] and [19] with the exception of the Relaxed memory model, which is
different from [10] because we use a separate derivation.
However, the precise formalization has not been published in this exact form, to the author’s

knowledge. We use a different but more intuitive formalization of RC20 to motivate the derivation of
RC20w (RC20 without porf-acyclicity), and RC20-Ordered (RC20 with “infinite” release sequences).

Our formalization of RC20 can be thought of as an adaptation of the technique used to formalize
RC11 [18], but applied to the RC20 memory model. To further justify our formalization, we prove
“common sense” intuitive properties that have not been formalized in the literature to the author’s
knowledge. For instance, we show that atomicity is equivalent to the irreflexivity of com, and that
com is a strict weak order under atomicity. We also show that hb-acyclicity is in fact redundant, as
it is implied by atomicity and coherence.

A.1 Detailed preliminaries
Events. An event is either a memory or fence event.
A memory event is a tuple ⟨id, tid, op, loc, ord, rval,wval⟩ which denote the event id, thread id,

operation, accessed memory location, memory order, value read, and value written respectively.
A fence event is a tuple ⟨id, tid, ord⟩ which denote the event id, thread id, and memory order
respectively.
The purpose of the event id is merely to disambiguate distinct memory events that happen to

share the same attributes, and as such, we will not place much emphasis on it. The operation is
either a read, write, or read-modify-write (henceforth RMW). We use the letters r, w, and rmw to
denote each type of operation. The memory orders are, arranged in increasing order of strength,
rlx ⊑ acq, rel ⊑ acqrel. Given an event 𝑒 , we allow accessing its properties with an object-notation
style, e.g. 𝑒.ord is the memory order of 𝑒 .

When the set of events is understood from context, we denote𝑊 , 𝑅, and 𝐹 the writes, the reads,
and the fence events of 𝐸 respectively. RMWs count as both writes as well as reads, so we denote
𝑀 =𝑊 ∩ 𝑅 the set of RMWs of 𝐸.
Given a set of events or relation over events 𝑆 and either a thread identifier 𝑡 , a memory

location 𝑥 , or a memory order ord, we denote 𝑆𝑡 , 𝑆𝑥 , 𝑆ord the set or relation restricted to events
on thread 𝑡 , accessing location 𝑥 , or having memory order ord respectively. We similarly denote
𝑆⊒ord ≜ {𝑒 ∈ 𝑆 | 𝑒.ord ⊒ ord} the set of events whose memory order is at least as strong as ord.
Executions. An abstract execution is a tuple 𝐺 ≜ ⟨𝐸, po,mo⟩, where 𝐸 is a set of events annotated
with values, and po,mo are binary relations over 𝐸. The program order po is a strict total order on
the events of each thread. The store-order relationmo (also known as modification order) is a strict
total order on the writes to each location.
Given an abstract execution 𝐺 , a concrete execution (for 𝐺) is a tuple 𝐺 ≜ ⟨𝐸, po,mo, rf⟩ where

𝐸, po,mo match those in𝐺 , such that the reads-from relation rf is a relation from writes to reads
rf ⊆𝑊 × 𝑅, rf is consistent with the locations and values of each event, i.e. for all (𝑒1, 𝑒2) ∈ 𝐸, 𝑒1’s
location and value written are equal to 𝑒2’s location and value read, and finally its inverse rf−1 is a
function, i.e. every read reads from at most one write.

A summary of the relations defined in each abstract or concrete execution is given in Fig. A1.
Notation for relations. We denote 𝑅; 𝑆 the composition of 𝑅 and 𝑆 , denote 𝑅?, 𝑅+, 𝑅∗ the reflexive,
transitive, and reflexive-transitive closures of 𝑅, and denote 𝑅−1 the inverse relation of 𝑅. Given a

https://doi.org/10.1145/3591251
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po ⊆
⊔

thread 𝑡

𝐸𝑡 × 𝐸𝑡 mo ⊆
⊔

location 𝑥

𝐸𝑥 × 𝐸𝑥 rf ⊆
⊔

location 𝑥

𝑊𝑥 × 𝑅𝑥

po𝑡 is a total order mo𝑥 is a total order rf−1 is a function

Fig. A1. Summary of the types of each relation in an abstract or concrete execution.

set of events 𝑆 , we denote [𝑆] the identity relation on 𝑆 . We also allow infix notation for relations,
e.g. 𝑒1 mo 𝑒2 rf 𝑒3 ⇐⇒ (𝑒1, 𝑒2) ∈ mo ∧ (𝑒2, 𝑒3) ∈ rf.
Given a relation 𝑅, we denote irr (𝑅) ≜ ∀𝑒.((𝑒, 𝑒) ∉ 𝑅) the statement that 𝑅 is irreflexive and

denote acy(𝑅) ≜ irr (𝑅+) the statement that 𝑅 is acyclic.
Memory models. An (axiomatic) memory model is a set of statements M with free variables
𝐸, po,mo, rf. A concrete execution 𝐺 satisfies or is consistent under a memory modelM (denoted
𝐺 |= M) if all its statements are true when 𝐸, po,mo, rf are interpreted according to𝐺 . An abstract
execution 𝐺 is feasible under M if there exists some concrete execution 𝐺 such that 𝐺 |= M.
Comparing strengths of memory models and defining fragments. M1 is stronger thanM2
(denoted M1 ⪯ M2) if for all concrete executions 𝐺 , 𝐺 |= M1 =⇒ 𝐺 |= M2. M1 is a fragment
of M2 if it only adds constraints, i.e. M1 = M2 ∪ C for some set of axioms C. Note that in the
literature, the term “fragment” tends to refer to syntactical restrictions, i.e. constraints placed on the
program itself. For example, the Relaxed-Acyclic fragment of RC20 requires all operations to have
memory order Relaxed. This nuance is not important in this work, so our definition is simplified.

A.2 Derived relations
We now define relevant relations derived from po,mo, rf.

We denote the from-reads relation fr ≜ (rf−1;mo) \ [𝐸], which relates reads and writes fr ⊆ 𝑅×𝑊 .
Intuitively, 𝑟 fr𝑤 means that𝑤 modifies some location “after” 𝑟 reads it.

We denote the coherence-order relation com ≜ (mo ∪ rf ∪ fr)+. This relates all events accessing
the same location com ⊆ ⊔

location 𝑥 𝐸𝑥 × 𝐸𝑥 . Intuitively, the coherence order on a location com𝑥

is the notion of “time” as viewed from the perspective of 𝑥 , so 𝑒1 com 𝑒2 intuitively means that 𝑒2
accesses some location “after” 𝑒1 accesses it. The coherence axiom (described later) is used to make
this intuitive notion correct.
We denote the release-sequence relation (for RC20) rs ≜ rf∗; [𝑊 ]. If 𝑤1 rs 𝑤2, we say that 𝑤2

participates in𝑤1’s release sequence. We can say that each write𝑤1 is associated with a release
sequence, a sequence of writes starting with the𝑤1 itself.

We denote the synchronizes-with relation (for RC20)

sw ≜ [𝐸⊒rel]; ( [𝐹 ]; po)?; rs; rf; (po; [𝐹 ])?; [𝐸⊒acq] .
It is helpful to think of sw as an extension of the simpler relation for the fence-free fragment,

under which sw = [𝐸⊒rel]; rs; rf; [𝐸⊒acq]. Under this fragment, we have𝑤 sw 𝑟 iff𝑤 is tagged rel
or stronger, 𝑟 reads from some write in𝑤 ’s release sequence, and 𝑟 is tagged acq or stronger. The
full definition for sw indicates how fence events participate in the synchronizes-with relation, but
we do not go into detail for its intuition as it is not required for this work.

Since rs ≜ rf∗ in RC20, it is much more common to formalize sw using the equivalent definition

sw ≜ [𝐸⊒rel]; ( [𝐹 ]; po)?; rf+; (po; [𝐹 ])?; [𝐸⊒acq] .
We denote the happens-before relation (for RC20) hb ≜ (po∪ sw)+. This intuitively captures the

notion of time as viewed from any particular event.
We denote the release-sequence-ordered relation (for RC20-Ordered) rso ≜ mo?. This means

that𝑤2 participates in𝑤1’s release sequence simply if𝑤2 is not mo-ordered before𝑤1 — release
sequences “last forever”.
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We denote the synchronizes-with-ordered relation (for RC20-Ordered)

swo ≜ [𝐸⊒rel]; ( [𝐹 ]; po)?; rso; rf; (po; [𝐹 ])?; [𝐸⊒acq] .

This strengthens the notion of release sequences from rs = rf∗ to rso = mo?.
We denote the happens-before-ordered relation (for RC20-Ordered), hbo ≜ (po ∪ swo)+. This

also captures the notion of time as viewed from an event, but under the RC20-Ordered memory
model.

Under the Release-Acquire fragment where every event’s memory order is as strong as possible
(𝑅 = 𝐸⊒acq,𝑊 = 𝐸⊒rel, 𝑀 = 𝐸acqrel), the happens-before and happens-before-ordered relations can
be simplified. We denote these simplifications hbRA ≜ (po ∪ rf+)+ and hboRA ≜ (po ∪ (mo?; rf))+
respectively. Observe that in the case of hbRA, the transitive rf+ edge can be simplified to get the
alternative definition hbRA ≜ (po ∪ rf)+, and for consistency with the literature, with refer to hbRA
with the more common name porf ≜ (po ∪ rf)+.

Formally, we can say that under the Release-Acquire fragment, hb = hbRA, porf and hbo = hboRA.
However, note that we still use these relations outside of the Release-Acquire fragment.

The full list of derived relations is given in Fig. A2

fr ≜ (rf−1;mo) \ [𝐸]
com ≜ (mo ∪ rf ∪ fr)+

rs ≜ rf∗

rso ≜ mo?

sw ≜ [𝐸⊒rel]; ( [𝐹 ]; po)?; rs; rf; (po; [𝐹 ])?; [𝐸⊒acq]
swo ≜ [𝐸⊒rel]; ( [𝐹 ]; po)?; rso; rf; (po; [𝐹 ])?; [𝐸⊒acq]
hb ≜ (po ∪ sw)+

hbo ≜ (po ∪ swo)+

porf, hbRA ≜ (po ∪ rf)+

hboRA ≜ (po ∪ (mo; rf))+

Fig. A2. The full list of derived relations used.

A.3 Consistency axioms
We now define the statements that will be used in the various memory models. These statements
are often named consistency axioms or simply axioms in the context of memory models. We give
these axioms names as the various memory models share many of their axioms.

A.3.1 Core consistency axioms. The most important axiom is atomicity, which states that every
RMWmust read from the immediately preceding write. We formalize this with the axiom irr (com),
the irreflexivity of com. It can be shown that this is equivalent to the original definition: so long as
mo and rf are well-formed, every RMW reads from the immediately preceding write iff com𝑥 is a
strict weak order iff com is irreflexive. This justifies the intuition that com𝑥 is the “notion of time”
as viewed from the perspective of 𝑥 , as it ensures there are no cycles in com𝑥 .

Analogously, another important axiom is acyclicity of happens-before, to justify the intuition that
hb (or hbo) is a valid “notion of time” by ensuring that there are no cycles. This is formalized with
the statement irr (hb) (or irr (hbo)).
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The next axiom is coherence, which intuitively states that each variable’s notion of time is
consistent with each of its events’ notion of time. This is formalized (for RC20) with the statement
irr (hb; com). Intuitively, if an event 𝑒1 happens before another 𝑒2, this axiom states that 𝑒2 cannot
be coherence ordered before 𝑒1. For RC20-Ordered, we use the appropriate notions of time, and
formalize it with the statement irr (hbo; com).
The above axioms formalize the majority of the C/C++ memory model, not accounting for SC

accesses (which we did not even formalize a memory order for), or parts of the standard that are
informally specified (memory fairness, out of thin air behaviors). As such, these form the core of
any memory model we consider.

RC20 proposes the axiom porf-acyclicity to formalize the prohibition of out of this air behaviors,
𝑖𝑟𝑟 (porf). In RC20-Ordered, the analogous axiom is hboRA-acyclicity irr (hboRA), replacing RC20’s
notion of time with RC20-Ordered’s.

A summary of the core consistency axioms is in Fig. A3.

atomicity ≜ irr (com)
hb-acyclicity ≜ irr (hb)

hbo-acyclicity ≜ irr (hbo)
coherence ≜ irr (hb; com)

coherence-ordered ≜ irr (hbo; com)
porf-acyclicity ≜ irr (porf)

hboRA-acyclicity ≜ irr (hboRA)

Fig. A3. The core consistency axioms.

A.3.2 Redundancy of acyclicity of happens-before. Interestingly, one of the core consistency axioms
is completely redundant, in the sense that if atomicity and coherence are assumed, hb-acyclicity is
automatically implied, and similarly for the ordered variants.

atomicity ∧ coherence =⇒ hb-acyclicity
atomicity ∧ coherence-ordered =⇒ hbo-acyclicity

A.3.3 Alternative coherence axioms. It is common in other formalisms to split the coherence axiom
into parts. At the most extreme, one can split the coherence axiom into all 4 combinations of
write-read coherence, formalizing the constraint placed on com when a write happens-before a
read, and similarly for the combinations read-read coherence, write-write coherence, and read-write
coherence.

This follows the decomposition of com into each type of coherence, the correctness of which is
a corollary of the proof that com is a strict weak order, assuming atomicity.

com ≜ comRW ∪ comRR ∪ comWW ∪ comWR

comRW ≜ fr comRR ≜ fr; rf comWW ≜ mo comWR ≜ mo?; rf
Decomposing the coherence axioms according to the above decomposition of com, we obtain

the axioms WR-coherence(-ordered), RR-coherence(-ordered), WW-coherence(-ordered), and RW-
coherence(-ordered). As the decomposition holds whenever com is a strict weak order (atomicity),
the decomposed coherence axioms are equivalent to the original coherence axioms under atomicity.
Instead of fully decomposing each coherence axiom into all 4 combinations, it is also common

to decompose the coherence axiom into 2 halves. Read-coherence combines WR-coherence and
RR-coherence, while write-coherence combines WW-coherence and RW-coherence.
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It is also common to formalize write coherence under porf-acyclicity. This allows us to drop the
case irr (hb; rf) as it is implied by porf-acyclicity, giving us the axioms write-coherence(-ordered)-
under-porf.
The decomposed coherence axioms are shown in Fig. A4 and their relationships are shown in

Fig. A5.

WR-coherence ≜ irr (hb; fr)
RR-coherence ≜ irr (hb; fr; rf)

WW-coherence ≜ irr (hb;mo)
RW-coherence ≜ irr (hb;mo?; rf)
read-coherence ≜ irr (hb; fr; rf?)
write-coherence ≜ irr (hb; (mo ∪ (mo?; rf)))

write-coherence-under-porf ≜ irr (hb;mo; rf?)
WR-coherence-ordered ≜ irr (hbo; fr)
RR-coherence-ordered ≜ irr (hbo; fr; rf)

WW-coherence-ordered ≜ irr (hbo;mo)
RW-coherence-ordered ≜ irr (hbo;mo?; rf)
read-coherence-ordered ≜ irr (hbo; fr; rf?)
write-coherence-ordered ≜ irr (hbo; (mo ∪ (mo?; rf)))

write-coherence-ordered-under-porf ≜ irr (hbo;mo; rf?)

Fig. A4. The decomposed variants of the coherence axiom.

A.3.4 Alternative atomicity axioms. Other formalisms similarly do not formalize the atomicity
axiom the same way. As before, we split atomicity into forward-atomicity and backward-atomicity,
where the first constraint states that an RMWmust not read from awrite the future, while the second
constraint states that an RMW must not read from a write in the past. Observe that comWW = mo
is already irreflexive because it is a strict total order, and comRW = fr is irreflexive by force, because
the identity relation is subtracted away. So the two atomicity cases correspond to the irreflexivity
of comWR and comRR respectively. These are shown in Fig. A6.

A.3.5 Axioms for defining fragments. We define the Release-Acquire, Relaxed, single-writer, and
single-location fragments in Fig. A7. Note that these constraints are all syntactic restrictions on
what’s allowed in an abstract or concrete execution, so they are fragments in the nuanced sense as
well.

The Release-Acquire and Relaxed fragments restrict which memory orders are allowed in the
program. The Release-Acquire fragment states that every read has memory order at least acq or
stronger and every write has memory order at least rel or stronger. This means RMWs have memory
order acqrel. The Relaxed fragment states that every event must have memory order rlx.

The single-writer fragment restricts where writes are performed, and states that every location
is written to by exactly one thread. This is formalized by saying that if two writes share a location,
they must also share the same thread.
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atomicity ∧ coherence
⇐⇒ atomicity ∧WR-coherence

∧ RR-coherence
∧WW-coherence
∧ RW-coherence

atomicity ∧ coherence-ordered
⇐⇒ atomicity ∧WR-coherence-ordered

∧ RR-coherence-ordered
∧WW-coherence-ordered
∧ RW-coherence-ordered

read-coherence ⇐⇒ WR-coherence ∧ RR-coherence
write-coherence ⇐⇒ WW-coherence ∧ RW-coherence

read-coherence-ordered ⇐⇒ WR-coherence-ordered ∧ RR-coherence-ordered
write-coherence-ordered ⇐⇒ WW-coherence-ordered ∧ RW-coherence-ordered

porf-acyclicity ∧write-coherence
⇐⇒ porf-acyclicity ∧write-coherence-under-porf

porf-acyclicity ∧write-coherence-ordered
⇐⇒ porf-acyclicity ∧write-coherence-ordered-under-porf

Fig. A5. Relationships between the decomposed coherence axioms.

forward-atomicity ≜ irr (mo?; rf)
backward-atomicity ≜ irr (fr;mo)

atomicity ⇐⇒ forward-atomicity ∧ backward-atomicity

Fig. A6. Alternative atomicity axioms.

ra-fragment ≜ (∀𝑒 ∈ 𝑅, 𝑒.ord ⊑ acq) ∧ (∀𝑒 ∈𝑊, 𝑒.ord ⊑ rel)
rlx-fragment ≜ ∀𝑒 ∈ 𝐸, 𝑒.ord = rlx

single-writer ≜ ∀location 𝑥,∀𝑤1,𝑤2 ∈𝑊𝑥 ,𝑤1 .tid = 𝑤2.tid

single-location ≜ ∀𝑒1, 𝑒2 ∈ 𝐸, 𝑒1.loc = 𝑒2 .loc

Fig. A7. Axioms for defining fragments.

Finally, the single-location fragment restricts the number of memory locations to just one. This
is formalized by saying every event shares the same location.

A.3.6 Coherence axioms for Release-Acquire. Under the Release-Acquire fragment, hb = porf,
which allows us to make some simplifications as optional rf? edges may be absorbed into porf.
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For the SRA memory model, we’ll need a strengthening of write coherence, where mo must be
transitively consistent with porf. These axioms are shown in Fig. A8.

read-coherence-ra ≜ irr (porf; fr)
write-coherence-ra ≜ irr (porf;mo)

strong-write-coherence-ra ≜ acy(porf ∪mo)

Fig. A8. Simplified coherence axioms under the Release-Acquire fragment.

A.3.7 Coherence axioms for Relaxed. Under the Relaxed fragment, hb = po, which allows us to
make some simplifications as well. Since write coherence is unwieldy under this fragment, we use
the split versions of write coherence there. These axioms are shown in Fig. A8.

read-coherence-rlx ≜ irr (po; fr; rf?)
write-coherence-rlx ≜ irr (po; (mo ∪ (mo?; rf)))
WW-coherence-rlx ≜ irr (po;mo)
RW-coherence-rlx ≜ irr (po;mo?; rf)

Fig. A8. Simplified coherence axioms under the Relaxed fragment.

A.4 Memory models
We finally define the memory models we use in this work, which are RC20, RC20w (RC20 with-
out porf-acyclicity), RC20-Ordered (our generalization of the single-writer constraint), RA, SRA,
Relaxed-Acyclic, and Relaxed.

RC20w ≜ {atomicity, coherence}
= {irr (com), irr (hb; com)}

RC20 ≜ {porf-acyclicity, atomicity, coherence}
= {irr (porf), irr (com), irr (hb; com)}

RC20-Ordered ≜ {hboRA-acyclicity, atomicity, coherence-ordered}
= {irr (hboRA), irr (com), irr (hbo; com)}

RA, Relaxed, and Relaxed-Acyclic are defined as fragments of RC20w and RC20. SRA is defined
to be a strengthening of RA that enforces strong-write-coherence.

RA ≜ RC20w ∪ {ra-fragment}
⇐⇒ RC20 ∪ {ra-fragment}

SRA ≜ RA ∪ {strong-write-coherence-ra}
Relaxed ≜ RC20w ∪ {rlx-fragment}

Relaxed-Acyclic ≜ RC20 ∪ {rlx-fragment}
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Using the alternative coherence axioms covered earlier, we have following simplifications for
RA, SRA, Relaxed, and Relaxed-Acyclic. These simplifications are useful in proofs as they allow
one to more directly pinpoint the source of inconsistency.

RA ⇐⇒ {ra-fragment, porf-acyclicity, atomicity,
read-coherence-ra,write-coherence-ra}

= {ra-fragment, irr (porf), irr (com), irr (porf; fr), irr (porf;mo)}
SRA ⇐⇒ {ra-fragment, porf-acyclicity, atomicity,

read-coherence-ra, strong-write-coherence-ra}
= {ra-fragment, irr (porf), irr (com), irr (porf; fr), acy(porf ∪mo)}

Relaxed ⇐⇒ {rlx-fragment, atomicity,
read-coherence-rlx,WW-coherence-rlx, RW-coherence-rlx}

= {rlx-fragment, irr (com), irr (po; fr; rf?), irr (po;mo), irr (po;mo?; rf)}
Relaxed-Acyclic ⇐⇒ {rlx-fragment, porf-acyclicity, atomicity,

read-coherence-rlx,WW-coherence-rlx, RW-coherence-rlx}
= {rlx-fragment, irr (porf), irr (com),

irr (po; fr; rf?), irr (po;mo), irr (po;mo?; rf)}

A.5 Relationships between memory models under single-writer and single-location
Under the single-writer constraint, the fragments of RC20-Ordered are equivalent to the corre-
sponding fragments of RC20, plus SRA. Under the single-location constraint, the fragments of
RC20-Ordered are equivalent to the corresponding fragments of RC20 and RC20w, plus SRA.

{single-writer} ∪ RC20-Ordered
⇐⇒ {single-writer} ∪ RC20

{single-writer} ∪ RC20-Ordered ∪ {ra-fragment}
⇐⇒ {single-writer} ∪ RA
⇐⇒ {single-writer} ∪ SRA

{single-writer} ∪ RC20-Ordered ∪ {rlx-fragment}
⇐⇒ {single-writer} ∪ Relaxed-Acyclic

{single-location} ∪ RC20-Ordered
⇐⇒ {single-location} ∪ RC20
⇐⇒ {single-location} ∪ RC20w

{single-location} ∪ RC20-Ordered ∪ {ra-fragment}
⇐⇒ {single-location} ∪ RA
⇐⇒ {single-location} ∪ SRA

{single-location} ∪ RC20-Ordered ∪ {rlx-fragment}
⇐⇒ {single-location} ∪ Relaxed-Acyclic
⇐⇒ {single-location} ∪ Relaxed
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A.6 Comparison between RC20 and the original RC20 axioms
We compare our formalism with the original formalism by Margalit and Lahav [19] for RC20.

Margalit-Lahav-RC20 ≜ {RC20-write-coherence, RC20-read-coherence,
RC20-atomicity, RC20-porf-acyclicity}

RC20-write-coherence ≜ irr (mo; rf?; hb?)
RC20-read-coherence ≜ irr (fr; rf?; hb)

RC20-atomicity ≜ irr (fr;mo)
RC20-porf-acyclicity ≜ acy(po ∪ rf)

RC20-porf-acyclicity is equivalent to porf-acyclicity, RC20-atomicity is equivalent to backward-
atomicity, and RC20-read-coherence is equivalent to read-coherence. We then have

RC20-write-coherence ⇐⇒ forward-atomicity ∧write-coherence-under-porf
where the first case corresponds to not taking the hb edge, and the second case corresponds to
taking the hb edge.

In total, we have porf-acyclicity directly, atomicity by forward-atomicity and backward-atomicity,
and coherence by write-coherence-under-porf, porf-acyclicity, and read-coherence.

Thus, Margalit-Lahav-RC20 and RC20 are equivalent.
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